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Abstract
We show that information on the probability density of local fluctuations can be obtained from a
numerical renormalization group calculation of a reduced density matrix. We apply this
approach to the Anderson–Holstein impurity model to calculate the ground state probability
density ρ(x) for the displacement x of the local oscillator. From this density we can deduce an
effective local potential for the oscillator and compare its form with that obtained from a
semiclassical approximation as a function of the coupling strength. The method is extended to
the infinite dimensional Holstein–Hubbard model using dynamical mean field theory. We use
this approach to compare the probability densities for the displacement of the local oscillator in
the normal, antiferromagnetic and charge ordered phases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The numerical renormalization group [1, 2] (NRG) approach
has been successfully applied to the calculation of static
and dynamical response functions for models of magnetic
impurities and quantum dots, and also been applied to lattice
models, such as the Hubbard model, in the framework of
dynamical mean field theory (DMFT) [3]. The response
functions calculated give information about the low energy
fluctuations which are of particular interest in the strong
correlation regime. However, as a thermodynamic average
is taken in calculating these response functions, some of the
information about these fluctuations, which is contained in
the original many-body states, is lost. Here we show that if
we take only a partial thermodynamic average, such as in the
calculation of a reduced density matrix, we can learn more
about the nature of the local fluctuations, and how they vary
as a function of the interaction terms.

We illustrate the approach first of all for the Anderson–
Holstein impurity model. In the Anderson–Holstein model
the occupation of the impurity state is linearly coupled to
a local harmonic oscillator, which has spatial coordinate x ,

representing the lattice degrees of freedom around the impurity
site. As the coupling of the oscillator to the impurity state is
increased, the nature of the local fluctuations of the oscillator
changes. If we take a full thermodynamic average then we
only get averaged information about the oscillator. If we take
a partial thermodynamic average, and calculate the reduced
density matrix at the impurity site, treating the rest of the
system as an ‘environment’, we can learn more about how
the local lattice fluctuations vary as the coupling strength
increases. From the reduced density matrix, calculated using
the NRG, we can deduce the probability distribution ρ(x) for
the x coordinate of the oscillator. From ρ(x) we can also
deduce an effective potential Veff(x), and study the change
of this potential as a function of the interaction strength and
of the frequency of the local oscillator. Later in the paper,
we extend the method to the infinite dimensional Holstein–
Hubbard lattice model using dynamical mean field theory
(DMFT) in combination with the NRG. We then compare
how the local probability distribution ρ(x) changes in the
normal, antiferromagnetic and charge ordered states for this
model.
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2. Local fluctuations in the Anderson–Holstein
impurity model

The Anderson–Holstein model corresponds to the single
impurity Anderson model [4] with an additional linear
coupling to a local phonon mode, as in the Holstein model [5].
The Hamiltonian takes the form,

H =
∑

σ

εfn̂f,σ + Un̂f,↑n̂f,↓ + g(b† + b)

(
∑

σ

n̂f,σ − 1

)

+
∑

k,σ

Vk(c
†
f,σ ckσ + h.c.)+

∑

kσ

εkc†
kσckσ + ω0b†b. (1)

The impurity level εf, as in the usual Anderson model, is
hybridized with conduction electrons of the host metal via a
matrix element Vk, with an interaction term U between the
electrons in the localized f (or d) state. There is in addition
a coupling g of the impurity site occupation n̂f,σ = c†

f,σ cf,σ

to a local oscillator of frequency ω0. A measure of the
hybridization is the width factor, �(ω) = π

∑
k V 2

k δ(ω− εk),
which for a flat conduction band of width W = 2D and Vk

independent of k, we can take as a constant � = πV 2/2D.
The oscillator coordinate operator x̂ , in terms of the creation
and annihilation operators, b† and b, is given by x̂ = (b +
b†)/

√
2ω0, where we have taken the mass of the oscillator,

M = 1. We have also set h̄ = 1 so that x−1 has the dimension
of square root of energy, and it is convenient to define a
characteristic length scale by x0 = 1/

√
ω0. A convenient

measure of the effects of the electron–phonon coupling on the
electronic system is the parameter λ = 2g2/ω0. In the limit
ω0 → ∞, such that λ remains finite, the model maps into the
Anderson model with U → U − λ, εf → εf + λ/2. The
behaviour of the model has been studied using the NRG [6]
and it has been used to study the transport through a quantum
dot in the presence of a coupling of the occupation dot to local
phonon modes [7].

To learn more about the state of the oscillator we use
the NRG to calculate the reduced density matrix ρred at
the impurity site. A procedure for calculating the reduced
density matrix was introduced into NRG calculations by
Hofstetter [8]. The original motivation was to find an improved
way of calculating the higher energy features in the spectral
density of the impurity Green function in cases of broken
symmetry. For NRG calculations the system is recast in
the form of a linear chain with an impurity at one end.
Sequential diagonalizations are then carried out starting at
the impurity site. The information from the shorter length
chains is used to calculate the higher energy features in the
spectral density, and in the longer chains the low energy
features. In the case of broken symmetry the ground state
for the shorter chains underestimates the degree of symmetry
breaking. In Hofstetter’s modified procedure the ground state
is first estimated from the longest chain calculated, and then
used to deduce the density matrix of the sites corresponding to
shorter chain lengths. Incorporating the reduced density matrix
into the calculation of the spectral density from the shorter
chains corrects the deficiencies of the standard approach in the
case of broken symmetry. Refinements of this approach have
been introduced more recently based on the use of a complete

set of NRG states [9, 10]. These have the advantage that the
sum rules on the total spectral density are satisfied exactly,
rather than approximately as in earlier versions of the NRG
approach.

The calculation of the density matrix gives additional
information which we can exploit. For example in the
Anderson–Holstein model, if we work backwards from the
longest chain, we can deduce the reduced density matrix at
the impurity site ρf,red. The matrix elements of this reduced
density matrix will be with respect to the basis states at the
impurity site, the states of all the other sites are averaged over
as they are taken to be part of the environment. The electronic
states at the impurity site can be labelled by the local charge q
(q = ∑

σ nf,σ ), and the z-component of spin mz , and the index
of the harmonic oscillator states ν. The matrix will be diagonal
with respect to the spin and charge indices, and so a typical
matrix element can be expressed as (ρf,red(q,mz))ν,ν′ .

The probability distribution function ρ(x) for the
oscillator coordinate x is given by

ρ(x) =
∑

q,mz

ρ(x : q,mz) (2)

where

ρ(x : q,mz) =
∑

ν,ν′
φν(x)(ρf,red(q,mz))ν,ν′φ∗

ν′(x), (3)

and φν(x) is the normalized real space harmonic oscillator
wavefunction,

φν(x) =
( √

ω0√
π2νν!

)1/2

e−ω0 x2/2 Hν(
√
ω0x), (4)

with the Hermite polynomial Hν(x) of order ν.
It is possible to define an effective potential for the

oscillator using an effective wavefunction defined byψeff(x) =√
ρ(x), which is taken to be a solution of the one dimensional

Schrödinger equation (recall M = 1, h̄ = 1),

−1

2

d2ψeff(x)

dx2
+ Veff(x)ψeff(x) = Eψeff(x), (5)

or

Veff(x) = E + 1

2

ψ ′′
eff(x)

ψeff(x)
. (6)

In terms of ρ(x) this translates into

Veff(x) = E + 1

4

[
ρ ′′(x)
ρ(x)

− 1

2

(
ρ ′(x)
ρ(x)

)2
]
. (7)

By construction this potential is such that the ground state
wavefunction can be used to reproduce the NRG derived ρ(x).

2.1. Results for the symmetric model

Unless otherwise stated we use in the following the parameters
W = 2D = 2, π� = 0.1 and ω0 = 0.1 setting the energy
scales for electrons and phonons in this section. The phonon
frequencyω0 has been chosen so that 1/ω0 is on the scale of the
life time of a electron on the impurity site, ω0 ∼ π�. We know
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Figure 1. The total probability distribution function ρ(x) for the oscillator displacement x in the ground state for a range of values of α, in the
left panel with U = 0 and the right with U/π� = 2.

Figure 2. The components, ρ(x : 0, 0) (dot-dashed curve), ρ(x : 1, 1/2)+ ρ(x : 1,−1/2) (full curve) and ρ(x : 2, 0) (dashed) of ρ(x) (dots)
for the case α = 0.5 (left panel), and α = 2.0 (right panel) for U = 0.

in the adiabatic limit ω0 
 π�, the x coordinate becomes a
classical variable, and in the opposite limit ω0 → ∞ it maps
on to an effective Hubbard model, so the range ω0 ∼ π� is the
interesting one to investigate.

In figure 1 we give results for the probability distribution
function ρ(x) for the symmetric model calculated as outlined
above. The results on the left-hand panel correspond to U = 0
(εd = 0). We take as a relative measure of the strength of
the phonon coupling and hybridization scale the dimensionless
factor α = λ/π� ranging from weak (α 
 1) to strong
coupling (α � 1). As α increases the distribution broadens,
and for α = 1.5 a two peak structure can be seen which
becomes more marked as the coupling strength is increased
further.

In figure 2 we plot the individual components of ρ(x);
ρ(x : 0, 0),

∑
± ρ(x : 1,±1/2) and ρ(x : 2, 0),

corresponding to q = 0, 1, 2, for U = 0, for the two cases
α = 0.5 (left panel) and α = 2 (right panel). One can see from
these curves the two factors that lead to the two peak structure
on increasing α. One factor is that the maxima of the curves
corresponding to q = 0 and 2 are shifted on either side of the
central peak corresponding to q = 1. This reflects the fact that
in these charge states, for an isolated impurity, the oscillator

is displaced from x = 0 to
√
λ/ω0 and −√

λ/ω0 respectively.
The other factor is that the weights of the peaks at q = 0 and
2, compared to the weight of the central peak corresponding
to q = 1, increase with α. The integrated weight under the
curve Pq is a measure of the probability of the occupation of
the local level in the state with charge quantum number q . This
shift in relative weights is due to the fact that the coupling
to the phonon mode induces a local attraction. The weight
P2 measures the probability of the local level being doubly
occupied, which is equal to the expectation value 〈nf,↑nf,↓〉.
For α = 2, the weights P0 = P2 = 0.430 261 are in precise
six figure agreement with 〈nf,↑nf,↓〉 as calculated directly from
the NRG calculation, and we have P1 = 1 − P0 − P2 =
0.139 478. Notice that for α = 0 the corresponding values
are P0 = P2 = 0.25, P1 = 0.5. The relative shift of the
weights can be explained to a large extent, but not completely,
by the local induced attractive interaction. If we take a model
with a local attractive interaction U/π� = −2, but no phonon
coupling, then the values deduced from the NRG for Pq are
P0 = P2 = 0.382 89, P1 = 0.234 22, which underestimates
the relative shift away from the state q = 1 found in the
phonon coupled model with α = 2. This shows that the
energetic gain of creating zero and doubly occupied sites is

3
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Figure 3. The spectral density ρf(ω) for the impurity single electron
Green function for U = 0 and α = 1, 1.5.

higher in the system with phonons as compared to the case
with instantaneous attraction.

The spectral density for the local f-electron Green function
ρf(ω) is shown in figure 3 for U = 0 with α = 1 and α = 1.5.
It can be seen that the development of the two peak form in
ρ(x) correlates with the development of three peaks in ρf(ω).
Clear shoulders can be seen in the result for ρf(ω) for α = 1,
and the three peak form has fully emerged for α = 1.5. The
central peak becomes extremely narrow for values of α in the
strong coupling regime [6].

The effect of the interaction U in suppressing the onset
of the double peak distribution can be seen by comparing the
U = 0 results with those shown in the right panel of figure 1,
which are for the case U/π� = 2 (εf = −U/2). The double
peak structure, which develops in the U = 0 case for α ∼ 1.5,
develops in the U/π� = 2 case only when α ∼ 2.5. This is
a smaller value than what is expected naively in the ω0 → ∞
case where Ueff = U − λ, signalling again that for finite ω0

when phonons can be excited the occupation of the zero and
doubly occupied sites is energetically more favourable.

The corresponding effective potentials Veff(x) for the U =
0 case, as deduced from equation (7), are shown in figure 4.
The onset of a double well feature can be seen in the results for
α = 1.0, which is before a double peak structure can be seen
in the corresponding ρ(x). The effective potentials for higher
values of α have a clear double well form.

It is of interest to compare this potential with one
calculated using a semiclassical approximation, in which we
neglect the kinetic energy of the oscillator and treat the
coordinate x as a classical variable. This is a commonly
used approximation in taking the electron–phonon coupling
into account, and corresponds to the Born–Oppenheimer
approximation. Evaluating the impurity contribution to the
total ground state energy E(x) as a function of x , one arrives at
an expression for the effective semiclassical potential, Vs-cl(x)
(=E(x)) given by

Vs-cl(x) = εf − 2�

π
+ ω2

0x2

2
− 2ε̄f(x)

π
tan−1

( ε̄f(x)

�

)

+ �

π
log

( ε̄2
f (x)+�2

D2

)
, (8)

where ε̄f(x) = εf + √
2ω0gx .

Figure 4. The effective potential Veff(x) for U = 0 and a range of
values of α, corresponding to the results for ρ(x) in the left panel of
figure 1.

Figure 5. The effective potentials Veff(x) (full lines) as deduced from
equation (7), compared with corresponding the semiclassical
potentials Vs-cl(x) (dashed lines), equation (8), for U = 0.

In figure 5 we compare the semiclassical potential Vs-cl(x)
with Veff(x) deduced from equation (7) for α = 1 and 2.

The relevant comparison is in the shapes of these
potentials, not their absolute values, and they have been subject
to a constant shift so their forms can be compared more easily.
It can be seen that the potentials develop in a similar way as the
coupling strength is increased, though when the double well
form develops the potential barrier between the wells is less
marked in the semiclassical case. The minima occur at very
similar x/x0-values; −0.74 (Vs-cl(x)) and −0.79 (Veff(x)) for
α = 1, and −1.26 (Vs-cl(x)) and −1.35 (Veff(x)) for α = 2.

The coefficient of the x2 term in Vs-cl(x) changes sign for
α = 0.5, which is the point at which the double well begins
to form. For α > 0.5 there are two mean field solutions for
the expectation value 〈x̂〉, corresponding to the two minima in
Vs-cl(x), and the local symmetry is broken. The positions of
the minima in Vs-cl(x) can be deduced from the equation

∂Vs-cl(x)

∂x
= 0 = ω2

0x + √
2ω0g(nf − 1), (9)
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Figure 6. The root mean deviation �x/x0 as a function of α for the
case U = 0, εf = 0 (full curve), and U/π� = 2, εf = −U/2
(dashed curve). The dotted curve corresponds to

√
α π�/ω0.

where nf is the mean field occupation value given by

nf = 1 − 2

π
tan−1

(
ε̄f(x)

�

)
, (10)

yielding

x = 〈x̂〉MF = −
√
λ

ω0
(nf − 1). (11)

We can deduce an exact relation of this type by introducing an
additional to term of the form c(b + b†) into the Hamiltonian.
The ground state energy E(c)will be a function of the coupling
c introduced, and we can deduce that

∂E(c)

∂c

∣∣∣∣
c=0

= 〈b + b†〉 = √
2ω0〈x̂〉. (12)

If we now perform a canonical transformation H ′ = Û−1 HÛ
with Û = e−c(b†−b)/ω0 , the terms in H ′ which depend on c are

− c2

ω0
− 2gc

ω0
(〈n̂f〉 − 1). (13)

As the canonical transformation does not effect the energy
values we can use this result in equation (12) to determine
〈b + b†〉, which leads to the result,

〈x̂〉 = −
√
λ

ω0
(〈n̂f〉 − 1). (14)

This is the same formula as derived from the semiclassical
approximation, as given in equation (11), except that the mean
field value nf is replaced by the exact value 〈n̂f〉 for the impurity
occupation. This result holds for U �= 0 and is exact.

In the mean field broken symmetry solutions we have the
two broken symmetry solutions at strong coupling, such that
nf ∼ 0 and nf ∼ 2, giving from equation (11) 〈x̂〉MF ∼
±√

λ/ω0 for the positions of the two minima Vs-cl(x). In the
exact solution for the impurity model, however, this broken
symmetry must be restored and the average value of x must be
zero. This is clearly the case in the NRG solution, as 〈x̂〉 can
be deduced from ρ(x), using 〈x̂〉 = ∫ ∞

−∞ xρ(x) dx , and is zero

Figure 7. The total probability distribution function ρ(x) for the
oscillator displacement x in the ground state for a range of values of
α with U = 0 and εf/π� = −0.5.

as ρ(x) is symmetric. However we have seen that the positions
of the minima in both Veff(x) and Vs-cl(x) are very close, so the
mean field values for 〈x̂〉MF provide an estimate of the positions
of the minima in Veff(x).

As 〈x̂〉 = 0 in the exact solution for the symmetric model,
a more interesting quantity to calculate is the root mean square
deviation�x , where (�x)2 = 〈(x̂ −〈x̂〉)2〉. In figure 6 we give
a plot of�x deduced from ρ(x) for the model with U = 0 and
several values of α.

It can be seen that �x does vary significantly with α,
reflecting the fact that in the strong coupling regime the
deviation �x is determined by the position of the minima in
the double potential wells. As the mean field values 〈x̂〉MF

were found to give a good estimate of these, and in the
strong coupling regime 〈x̂〉MF ∼ ±√

α π�/ω0, in figure 6 we
compare this estimate with the calculated value of �x . It is
seen to provide a good estimate of �x over the range of α
shown. Also in figure 6, we give the values of �x for the
symmetric model with U/π� = 2. The tendency for the
U term to suppress the fluctuations for lower values of the
coupling strength λ, noted in figure 1, is apparent but has only
a relatively minor effect in the stronger coupling range.

2.2. Results for the asymmetric model

With only a small degree of asymmetry the form for ρ(x)
changes quite dramatically in the strong interaction regime.
This is because the doubly occupied impurity state is now
predominantly favoured. In figure 7 we show results for ρ(x)
in a case with εf/π� = −0.5 and U = 0 for the same range of
values of α as in figure 1. There is just a single narrow peak for
ρ(x) in each case, which shifts to slightly more negative values
of x as α increases. In figure 8 we compare the semiclassical
potential and Veff(x), as derived from equation (7), for the
case α = 1. Both potentials have an absolute minimum at
x/x0 = −1.29, though in the semiclassical case there is a
secondary local minimum. This value of x/x0 agrees with
that predicted by equation (14) using the value for 〈n̂f〉 derived
from the NRG calculation, which gives x/x0 = −1.2909. We

5



J. Phys.: Condens. Matter 22 (2010) 115602 A C Hewson and J Bauer

Figure 8. The effective potentials Veff(x) (full curve) as deduced
from equation (7), compared with the corresponding semiclassical
potentials Vs-cl(x) (dashed curve) for α = 2.0, εf/π� = −0.5 and
U = 0.

can check the relation (14) by taking the average of x over the
distribution ρ(x) and then comparing it with the result from
equation (14) using the NRG calculated 〈n̂f〉. The results for
a range of values of α are shown as points (crosses and plus
signs) in figure 9 (smaller values for U = 0, εf/π� = −0.5,
and larger values U/π� = 2, εf = −U/2 − 0.05). For
both sets of parameters the results of the two calculations are
in remarkably good agreement, giving the same values to at
least five significant figures in all cases. The full curve in
figure 9 corresponds to the mean field result (U = 0) for 〈x̂〉/x0

and can also be seen to be in good agreement with the exact
results. Also shown in figure 9 is the root mean square �x
calculated from ρ(x). Though the average displacement 〈x̂〉
increases with increasing α it can be seen that �x remains
almost constant. In mean field theory �x = 0, as in this
approximation 〈x̂2〉 = 〈x̂〉2. In the semiclassical approach one
could estimate ρ(x) by solving the Schrödinger equation (5)
with the potential Vs-cl(x) and using ρ(x) = |ψgs(x)|2, where
ψgs(x) is the ground state wavefunction, and then use the result
to take an average of x2. We can, however, calculate it exactly
in the limit of very weak and strong coupling limits. In the
uncoupled case, using the ground state wavefunction for the
oscillator, we find (�x)2/x2

0 = 1/2. In the strong coupling
case with asymmetry we can take 〈n̂f〉 = 2 or 〈n̂f〉 = 0, and use
a displaced oscillator transformation to new phonon creation
and annihilation operators, a†, a(†) = b(†)± g/ω0. The ground
state |gs〉 then corresponds to the state a|gs〉 = 0, and in this
state 〈b†b〉 = g2/ω2

0, 〈x̂2〉 = x2
0 (1+4g2/ω2

0)/2. We have from
equation (14) with 〈(n̂f − 1)〉 = ±1, 〈x〉2 = 2g2x2

0/ω
2
0, which

again gives (�x)2/x2
0 = 1/2, so that we find �x/x0 = 1/

√
2

in both limits. This agrees well with the results shown in
figure 9, and �x does not deviate much from this value over
the whole range of α. As will be seen in section 3, for the case
of the lattice model, the results will be different for �x near
the transition to a charge ordered state.

The corresponding values for the case with U/π� = 2,
εf/π� = −0.15 are also shown in figure 9. The effect of
finite U is to suppress the value of 〈x̂〉 for smaller values of

Figure 9. The values of 〈x̂〉/x0 for U = 0, εf/π� = −0.5, and
U/π� = 2, εf = −U/2 − 0.05, as calculated from the average of
ρ(x) (crosses) and those deduced from equation (14) (plus signs).
The mean field results for U = 0 correspond to the full curve. The
corresponding results for the root mean deviation �x/x0 are also
shown, for the case U = 0, εf/π� = −0.5, (dashed curve and
circles), and U/π� = 2, εf = −U/2 (dotted curve and squares).

α, but only has a marginal effect for α � 3 and has very little
effect on �x . Again there is five figure agreement in the two
calculations for 〈x̂〉; the one based on integrating over ρ(x) and
the one using equation (14).

The model in the limit ω0 → ∞ (λ finite) corresponds to
an Anderson model with an interaction term U −λ. For U = 0
and finite λ, therefore, it becomes equivalent to a negative-
U Anderson model. The symmetric model in the regime
λ/π� � 1 has a Kondo effect due to charge rather than spin
fluctuations. Introducing some asymmetry by changing εf from
the value for the symmetric case is equivalent to introducing a
magnetic field in the Kondo case [11], which for large fields
suppresses the Kondo effect. We found that in using a value
εf/π� = −0.5 the mean field estimate for 〈x̂〉 and the exact
result were in good agreement. This is due to the fact that
this degree of asymmetry corresponds to the Kondo case with
a large magnetic field, and also because the value of ω0 used
is much smaller than the bandwidth D. For a much smaller
degree of asymmetry, which would correspond to a smaller
‘magnetic’ field, we should expect to find some limitations
in the predictions from the semiclassical approximation. To
examine this further we consider the case with α = 2 and
εf/π� = −0.01. In figure 10 we show the semiclassical
potential and Veff(x) derived from (7). In this case we see that
both potentials have two local minima. The absolute minimum
in the two cases coincide at a value of x/x0 = −1.26,
which corresponds to the mean field estimate of 〈x̂〉/x0. The
value obtained by averaging x over the distribution ρ(x), and
from formula (14) with the NRG value for 〈n̂f〉, both give
〈x̂〉/x0 = −1.098 88. The average value in this case no
longer coincides with the absolute minimum of the potential,
as the fluctuations to the local neighbouring minimum make a
significant contribution. As the semiclassical equation (11) for
〈x̂〉 agrees with the exact one in equation (14), this difference
arises from the fact that the semiclassical prediction for nf

disagrees with the exact value of 〈n̂f〉. The semiclassical
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Figure 10. The effective potentials Veff(x) (full curve) as deduced
from equation (7), compared with the corresponding semiclassical
potentials Vs-cl(x) (dashed curve) for α = 2.0, εf/π� = −0.01 and
U = 0.

Figure 11. The average oscillator displacement 〈x̂〉/x0 (full curve) as
a function of α for the case U = 0, εf/π� = −0.01, ω0 = 0.6. The
values calculated from the average over ρ(x) are indicated by crosses
and those deduced from equation (14) by plus signs. The dashed-dot
curve gives the corresponding mean field results. Also shown are the
results of the root mean square deviation �x/x0 (dashed curve and
circles).

prediction gives nf = 1.889 and the exact value from the
NRG gives 〈n̂f〉 = 1.777, which explains the difference
in the predictions. It is interesting to note, however, that
the semiclassical prediction does coincide with the absolute
minimum of the effective potential derived from the NRG
results.

The deviations from mean field theory become more
marked for higher oscillator frequencies. In figure 11 we give
a plot of 〈x〉/x0 for the case U = 0 and εf/π� = −0.1, taking
the phonon frequency value ω0 = 0.6. In this case, except for
the small values of α, there is quite a discrepancy between the
exact and mean field results. The corresponding results for the
root mean square deviation�x are also shown. The results for
this quantity are very similar to those shown in figure 9.

We can also examine the dependence of ρ(x) on the
oscillator frequency ω0. In figure 12 we show the change in
form of ρ(x) as the frequency is increased for a fixed value
of λ in the strong coupling regime corresponding to α = 4.5

Figure 12. The variation of ρ(x) with the frequency ω0 in the strong
coupling case with α = 4.5. The value of x0 is fixed and corresponds
to 1/

√
ω0 for ω0 = 0.1.

(U = 0, εf = 0). We argued earlier that the minimum in
the effective potential in the strong coupling regime occurs at
a value of x ∼ √

λ/ω0. We would expect the peak in ρ(x) to
behave in a similar way, so for fixed λ the peak positions should
vary as 1/ω0. This can be seen to be well satisfied in the results
shown in figure 12. In the limit ω0 → ∞ the double peak
feature disappears entirely and ρ(x) becomes a delta function
at x = 0. In this limit the mean field equation for nf still
has a broken symmetry solution for α > 0.5. This coincides
with the static mean field solution for the Anderson model
with U = −λ, if one first performs a Hubbard–Stratonovich
transformation to couple the auxiliary field x(τ ) solely to the
impurity charge. It differs by a factor of 2 from the mean
field theory of the Anderson model with U = −λ, where the
interaction term Und,↑nd,↓ is approximated by U(nd,↑〈nd,↓〉+
nd,↓〈nd,↑〉 − 〈nd,↑〉〈nd,↓〉).

3. Local fluctuations in the Holstein–Hubbard model

The states of broken symmetry predicted by the semiclassi-
cal/mean field theory for larger values of λ cannot exist for the
impurity Anderson–Holstein model; the symmetry has to be
restored in the exact solution. Symmetry breaking, however,
as a result of a phase transition can occur in a lattice model. To
study ρ(x) in the neighbourhood of a phase transition we con-
sider the Holstein–Hubbard model, described by the Hamilto-
nian,

H =
∑

i, j,σ

(ti j c
†
i,σ c j,σ + h.c.)+ U

∑

i

n̂i,↑n̂i,↓

+ ω0

∑

i

b†
i bi + g

∑

i

(bi + b†
i )

(∑

σ

n̂i,σ − 1
)
. (15)

c†
i,σ creates an electron at lattice site i with spin σ , and b†

i a

phonon with oscillator frequency ω0, n̂i,σ = c†
i,σ ci,σ . There is

a coupling g to the local charge at each site, as in the Holstein
model, and an on-site interaction U between spin-up and spin-
down electrons, as in the Hubbard model. The hopping term
ti j between orbitals localized on each site leads to a conduction
band with a density of states D0(ω) when g = U = 0. In the

7
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Figure 13. The local probability distribution ρ(x) for U = 2 (right part) for the N state and U = 5 (left part) for various values of λ for
ω0 = 0.6.

limit of infinite dimensions the model can be mapped into an
effective Anderson–Holstein model, which can then be solved
using the NRG. This has been described fully elsewhere [2, 3],
and is known as the dynamical mean field theory (DMFT). For
three dimensional systems, the mapping is only approximate.
This approach is non-perturbative and can be applied in the
strong interaction regime of these models to describe strong
correlation effects, and indications are that it constitutes a good
approximation when the self-energy of the electrons is local
and a function of frequency only.

There have been several applications of the DMFT
method to study phase transitions in the Hubbard–Holstein
model [12–15]. There are various possible transitions to states
of broken symmetry in this model; bipolaronic (BP), charge
ordered (CO), antiferromagnetic (AFM) and superconducting
(SC) states. We restrict our attention here to the case of
half-filling, so we do not include the superconducting case,
which exists as a stable state away from half-filling. The
transition first studied by the DMFT-NRG method for this
model did not include the possibility of either charge order
or antiferromagnetism [13, 14]. There is, however, a metal–
insulator transition from the normal state (N) to the bipolaronic
state (BP), first studied for the model with U = 0, which
occurs as the electron–phonon coupling λ is increased at a
critical value λc. The transition also occurs in the model
with U �= 0, at larger values of λc, as the attractive term
induced by λ has to overcome the repulsion due to U(>
0). If the possibility of transitions to charge order (CO) and
antiferromagnetism are included, then it has been found that
antiferromagnetism occurs for U −λ > 0 and charge order for
U − λ < 0 [16, 17].

For the DMFT-NRG calculations presented here we have
taken a Bethe lattice form for the density of states D0(ω) of the
conduction electrons,

D0(ω) = 1

2π t2

√
4t2 − ω2. (16)

We choose a value t = 1 to set the energy scale in the
following, which corresponds to a bandwidth W = 4t = 4.
The physically relevant regime in the lattice case is for phonon
frequencies small compared with the bandwidth. In most of

the calculations in this section we take ω0 = 0.6, which is
small compared with the bandwidth of W but well away from
the adiabatic limit. The distribution function for the local
oscillator displacement ρ(x) was calculated from the DMFT-
NRG density matrix using equation (2).

3.1. Model without long range order

We consider first the results for the normal to bipolaronic
transition, which are shown in figure 13 for U = 2 (left panel)
and U = 5 (right panel) and different values of λ. In the left
panel we can see for the case of U = 2 how the probability
distribution becomes broader as λ is increased. As we do not
allow for symmetry breaking, here the system changes between
zero occupation and double occupation with the associated
oscillator fluctuations to minimize the energy. The situation
is similar to the impurity case shown in figure 1, and a two
peak form develops in a similar way. However in this case,
when the two peak structure develops, a gap also appears in
the electron density of states, D(ω), signalling the transition
to a insulating bipolaronic state. The correlation can be seen
in the corresponding results for D(ω), shown in figure 14 over
the transition regime. This is in contrast to the impurity density
of states shown in figure 3, where there is a shift of spectral
weight from the region near ω = 0 to higher and lower values
of ω, but a narrow central peak at ω = 0 remains. The
narrow peak reflects the fact that there is no broken symmetry
in the impurity case, and there are fluctuations between the two
potential wells that restore the symmetry. In the right panel of
figure 13 the results are shown for ρ(x) across the transition
for U = 5. There is a similar trend leading to a two peak
structure in the bipolaronic phase, though at larger values of λ
due to the larger value of U . However, in this case there is an
intermediate regime where ρ(x) has three maxima, which is
very close to the metal–bipolaron transition, and the change is
more marked, occurring over a smaller range of λ.

Similarly to the impurity case, equation (7), we can
compute the effective potential Veff(x), which is formed locally
in the lattice model due to the electron–phonon coupling, from
the probability distribution. This is shown in figure 15 for the
same values as before, U = 2 (left panel) and U = 5 (right
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Figure 14. The local electronic spectral functions D(ω) in comparison for U = 2 (left panel) and U = 5 (right panel) for various λ and
ω0 = 0.6.

Figure 15. The local effective potential V (x) for U = 2 (left part) for the N state and for U = 5 (right part) for various values of λ for
ω0 = 0.6.

panel). In the case U = 2, on increasing λ one sees that
the potential becomes shallow and eventually develops two
minima at finite ±xm . Note that although there are already
two minima for λ = 2.8, the fluctuations are sufficient to keep
the system in a metallic state, as can be seen also from the
spectral function in figure 14. When the minima are deeper,
as for λ = 3.2, the system is in the BP insulating state. The
transition is continuous.

In the case U = 5 the overall trend is similar, but larger
values of λ are required to induce the transition. Close to
the transition we can find a structure of three local minima,
where the one at x = 0 is lifted upon increasing λ. This is
characteristic of a discontinuous transition which is expected
to occur for larger values of U as discussed by Koller et al
[14].

If we restrict ourselves to the pure Holstein model (U =
0), then it is also of interest here to study the quality of the
semiclassical approximation. Similarly to the impurity case
the potential can be calculated and one finds

Vs-cl(x) = − 2
3 D0(μ̄(x))3 − μ̄(x)2 D0(μ̄(x))

− 2μ̄(x)

π
arcsin

( μ̄(x)
D

)
+ 1

2
ω2

0x2 − μ, (17)

where μ̄(x) = μ− √
2ω0gx . The condition ∂Vs-cl(x)

∂x = 0 gives
the mean field solutions and one can infer that at half-filling,
μ = 0, the potential has two minima if λ > λmf

c = πD/4.
The value for this to occur in the DMFT with local quantum
fluctuations is larger and also depends on ω0. For D = 2
one has, e.g., for ω0 = 0.2 the value λc � 1.75 and for
ω0 = 0.6 the value λc � 2. For the first case, ω0 = 0.2,
we give a comparison of the effective potential obtained in
DMFT calculations and the semiclassical approximation (17)
in figure 16 for two values of λ. For the smaller value of
λ, with the minimum at x = 0, one finds a quite good
agreement between the calculations. However, closer to the
transition the results vary significantly. λ = 1.6 is still a
metallic solution with a narrow quasiparticle peak in DMFT.
As λ > λmf

c , the semiclassical approximation possesses two
shallow minima for this case which can barely be resolved on
the plot. The positions (1.16 semiclassical, 2.32 DMFT-NRG)
differ significantly from the DMFT result, where fluctuations
keep the state metallic. Better agreement between the position
of the minima in the semiclassical approximation and DMFT
can again be found in the insulating (BP) phase.
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Figure 16. Comparison of V (x) for the DMFT-NRG calculation
(full line) with the semiclassical approximation (dashed line) for
ω0 = 0.2. The values of Vs-cl(x) have been offset to make the
comparison clearer.

3.2. Model with long range order

To consider charge ordered states, the lattice is divided into two
sublattices denoted by A and B. Charge order develops when
the occupation values 〈n̂i,A〉 �= 〈n̂i,B〉, and their difference
divided by 2 can be taken as the order parameter �co. As
〈n̂i,A + n̂i,B〉 = 2 at half-filling, �co can be taken as
1/2(〈n̂i,A〉−1). When charge order occurs ρ(x) shifts position
to a displaced state appropriate to the local charge to minimize
the energy. This can be seen in figure 17 (left panel), where we
show ρ(x) for U = 2 and values of λ as charge order develops
for λ > U . In this case ρ(x) has a single peak which shifts and
narrows slightly as λ is increased. The same trend can be seen
in the right panel of figure 17 for the case U = 5, though the
shifting and narrowing occurs more rapidly as λ is increased.
The shifting of a single peak with increasing λ is similar to
the asymmetric impurity case shown in figure 7, though the
narrowing is an extra feature.

The exact relation in equation (14) which we derived
earlier between the average displacement and the expectation
value for occupation of the impurity site also holds for the
lattice model. If we let 〈x̂〉 denote the value of 〈x̂i,A〉, then

Figure 18. The expectation values 〈x〉 for various values of U as a
function of λ for ω0 = 0.6 in the CO state.

we have from equation (14)

�co = −ω0〈x̂〉
2
√
λ
, (18)

so that the order parameter is directly proportional to 〈x̂〉.
Again we can test this relation by calculating 〈x̂〉 from the
average over ρ(x) and use the NRG results for �co, and find
that it is satisfied very precisely.

In figure 18 we plot 〈x̂〉/x0 for various values of U as a
function of λ, which from equation (18) is proportional to the
order parameter �co. In the normal or antiferromagnetic state
〈x̂〉 = 0, and the onset of the charge order can be seen clearly
to occur for λ ∼ U . The transition increases sharply with
increasing U , such that for U = 5 it is discontinuous. There is
a similar trend in the impurity case shown in figure 6, but it is
more marked in the lattice case.

The mean square deviation (�x)2 for the lattice
coordinate, which can be deduced from the appropriate
averages over ρ(x), is a measure of the fluctuations of the
order parameter. In figure 19 (�x)2/x2

0 is plotted for the
same set of parameters as for 〈x̂〉. This quantity is finite
in the antiferromagnetic phase for λ < U , and increases
significantly as the transition is approached. The fluctuations

Figure 17. The local probability distribution ρ(x) for U = 2 (left part) for the CO state and for U = 5 (right part) for various values of λ for
ω0 = 0.6.
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Figure 19. The expectation values�x2 for various values of U as a
function of λ for ω0 = 0.6 in the AFM state for λ < U and in the CO
state for λ > U .

can be seen to become much greater in the region of the
transition for the intermediate values of U , most prominently
near the point U = λ = 4, where the transition changes from
second to first order. This is a reflection of the fact that ρ(x)
broadens at the transition and then narrows as λ is increased
further. Once the charge order has been well established the
fluctuations then fall off rapidly to give (�x)2/x2

0 = 1/2.
Though the values of (�x)2 away from the transition behave
like the impurity case shown in figure 9, there is a very marked
difference in the critical region, especially for large U . An
analysis of the effective potential is also possible for the CO
case, but will be omitted here. For U = 0 one can similarly
derive a semiclassical potential. A detailed DMFT study of
CO order in the Holstein model in the adiabatic limit, where
also the probability distribution and the effective potential are
discussed, has been given by Ciuchi et al [18].

4. Conclusions

We have shown how the reduced density matrix obtained from
NRG calculations can provide physically relevant information
about the local fluctuations. We have illustrated this by
calculating the probability density function ρ(x) for the spatial
coordinate x of the local oscillator in the impurity Anderson–
Holstein and lattice Hubbard–Holstein models. This has
enabled us to address a number of interesting questions. We
have been able to see how the features in ρ(x) correlate with
the features seen in the spectral density of the electrons as
the interaction strength is increased. We have also deduced
an effective potential Veff(x), such that the wavefunction
|ψ(x)|2 of the Schrödinger equation corresponds to ρ(x).
This has enabled us to compare this potential with the one
obtained from a semiclassical approximation, where the x-
coordinate is treated as a classical variable, which is equivalent
to the Born–Oppenheimer approximation. The results have
provided a guide as to when the semiclassical approximation
can be expected to give reliable results, and to clarify its
limitations.

We have also been able to compare the fluctuations of
x in the impurity case with those in the lattice model in the
various parameter regimes. For the normal state BP insulator

transition we found a double well potential for weaker coupling
and a structure with three local minima for stronger coupling.
The semiclassical approach only gave a good description for
weaker electron–phonon coupling. Allowing for the symmetry
breaking in the lattice model, we have found that ρ(x)
broadens in the critical region of the antiferromagnetic to
charge order phase transition. The critical fluctuations become
particularly marked in the intermediate U regime near the point
where the ground state transition changes from continuous to
discontinuous behaviour.

From a calculation of the reduced density matrix it is
also possible to learn something about the local electronic
fluctuations. If in equation (2) we integrate over the oscillator
coordinate x , but do not carry out the sum over q and mz , then
we have components ρ(q,mz) of the impurity reduced density
matrix. From these, for example, we can deduce directly the
impurity charge fluctuation, (�n̂f)

2 = 〈(n̂f − 〈n̂f〉)2〉,
(�n̂f)

2 = 4ρ(2, 0)+
∑

mz=±1/2

ρ(0,mz)

−
(

2ρ(2, 0)+
∑

mz=±1/2

ρ(0,mz)
)2
. (19)

If the calculation of the reduced density matrix were to be
terminated earlier, say at the neighbouring site to the impurity,
local electronic fluctuations and near neighbour correlation
functions could be deduced in a similar way.

Acknowledgment

We thank Winfried Koller for his work in initiating this
investigation and for his contribution with Dietrich Meyer to
the development of the NRG programmes.

References

[1] Wilson K 1975 Rev. Mod. Phys. 47 773
[2] Bulla R, Costi T and Pruschke T 2008 Rev. Mod. Phys. 80 395
[3] Georges A, Kotliar G, Krauth W and Rozenberg M 1996 Rev.

Mod. Phys. 68 13
[4] Anderson P W 1961 Phys. Rev. 124 41
[5] Holstein T 1959 Ann. Phys. NY 8 325
[6] Hewson A C and Meyer D 2002 J. Phys.: Condens. Matter

14 427
[7] Cornaglia P S, Ness H and Grempel D R 2004 Phys. Rev. Lett.

93 147201
[8] Hofstetter W 2000 Phys. Rev. Lett. 85 1508
[9] Peters R, Pruschke T and Anders F B 2006 Phys. Rev. B

74 245114
[10] Weichselbaum A and von Delft J 2007 Phys. Rev. Lett.

99 076402
[11] Hewson A C, Bauer J and Koller W 2006 Phys. Rev. B

73 045117
[12] Benedetti P and Zeyher R 1998 Phys. Rev. B 58 14320
[13] Meyer D, Hewson A and Bulla R 2002 Phys. Rev. Lett.

89 196401
[14] Koller W, Meyer D and Hewson A C 2004 Phys. Rev. B

70 155103
[15] Koller W, Hewson A C and Edwards D M 2005 Phys. Rev. Lett.

95 256401
[16] Bauer J 2009 arXiv:0907.3751 [cond-mat] (unpublished)
[17] Bauer J and Hewson A C 2010 in preparation
[18] Ciuchi S and de Pasquale F 1999 Phys. Rev. B 59 5431

11

http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1088/0953-8984/14/3/312
http://dx.doi.org/10.1103/PhysRevLett.93.147201
http://dx.doi.org/10.1103/PhysRevLett.85.1508
http://dx.doi.org/10.1103/PhysRevB.74.245114
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevB.73.045117
http://dx.doi.org/10.1103/PhysRevB.58.14320
http://dx.doi.org/10.1103/PhysRevLett.89.196401
http://dx.doi.org/10.1103/PhysRevB.70.155103
http://dx.doi.org/10.1103/PhysRevLett.95.256401
http://arxiv.org/abs/0907.3751
http://dx.doi.org/10.1103/PhysRevB.59.5431

	1. Introduction
	2. Local fluctuations in the Anderson--Holstein impurity model
	2.1. Results for the symmetric model
	2.2. Results for the asymmetric model

	3. Local fluctuations in the Holstein--Hubbard model
	3.1. Model without long range order
	3.2. Model with long range order

	4. Conclusions
	Acknowledgment
	References

